Lab-grown hair cells to treat baldness could be on the way

These companies are bringing high-tech biology to an industry known for illusions. There are plenty of bogus claims about both hair-loss remedies and the potential of stem cells. “You’ve got to be aware of scam offerings,” Paul Knoepfler, a stem-cell biologist at UC Davis, wrote in November.

A close-up of a skin organoid that is covered with hair follicles.

JIYOON LEE AND KARL KOEHLER, HARVARD MEDICAL SCHOOL

Tricky business

So is stem-cell technology going to cure baldness or become the next false hope? Hamilton, who was invited to give the keynote at this year’s Global Hair Loss Summit, says he tried to emphasize that the company still has plenty of research ahead of it . “We have seen so many [people] come in and say they have a solution. That has happened a lot in hair, and so I have to address that,” he says. “We’re trying to project to the world that we are real scientists and that it’s risky to the point I can’t guarantee it’s going to work.”

Right now, there are some approved drugs for hair loss, like Propecia and Rogaine, but they’re of limited use. Another procedure involves cutting strips of skin from someplace where a person still has hair and surgically transplanting those follicles onto a bald spot. Lujan says in the future, hair-forming cells grown in the lab could be added to a person’s head with a similar surgery.

“I think people will go pretty far to get their hair back. But at first it will be a bespoke process and very costly,” says Karl Koehler, a professor at Harvard University.

Hair follicles are surprisingly complicated organs that arise through the molecular crosstalk between several cell types. And Koehler says pictures of mice growing human hair aren’t new. “Anytime you see these images,” says Koehler, “there is always a trick, and some drawbacks to translating it to humans.”

Koehler’s lab makes hair shafts in an entirely different way—by growing organoids. Organoids are small blobs of cells that self-organize in a petri dish. Koehler says he originally was studying deafness cures and wanted to grow the hair-like cells of the inner ear. But his organoids ended up becoming skin instead, complete with hair follicles.

Koehler embraced the accident and now creates spherical skin organoids that grow for about 150 days, until they are around two millimeters across. The tube-like hair follicles are clearly visible; he says they are the equivalent of the downy hair that covers a fetus.

One surprise is that the organoids grow backwards, with the hairs pointing in. “You can see a beautiful architecture, although why they grow inside out is a big question,” says Koehler.

The Harvard lab uses a supply of reprogrammed cells established from a 30-year-old Japanese man. But it’s looking at cells from other donors to see if organoids could lead to hair with distinctive colors and textures. “There is absolutely demand for it, says Koehler. “Cosmetics companies are interested. Their eyes light up when they see the organoids.”

Leave a Reply

Your email address will not be published.